unitary operator
unitary operator

AnoperatorisUnitaryifitsinverseequaltoitsadjoints:U-1=U+orUU+=U+U=I.Inquantummechanics,unitaryoperatorisusedforchangeofbasis.,2018年4月24日—Forfinitedimensionalinnerproductspaces,every1-1operatorisalsoanisomorphism.However,unitaryoperatorsarespec...

What is the unitary operator in quantum mechanics?

2019年9月29日—Aunitaryoperator(likeaunitarymatrix)isanoperatorthatcanchangeeitherthecoordinatesorthestateitself.Therequirementisthatit ...

** 本站引用參考文章部分資訊,基於少量部分引用原則,為了避免造成過多外部連結,保留參考來源資訊而不直接連結,也請見諒 **

Hermitian and unitary operator

An operator is Unitary if its inverse equal to its adjoints: U-1 = U+ or UU+ = U+U = I. In quantum mechanics, unitary operator is used for change of basis.

linear algebra

2018年4月24日 — For finite dimensional inner product spaces, every 1-1 operator is also an isomorphism. However, unitary operators are special isomorphisms ...

Unitary operator

A unitary operator is a bounded linear operator U : H → H on a Hilbert space H that satisfies U*U = UU* = I, where U* is the adjoint of U, and I : H → H is the identity operator. The weaker condition U*U = I defines an isometry. The other condition, UU* =

unitary operator in nLab

2023年11月9日 — Unitary operators are the isomorphisms of Hilbert spaces since they preserve the basic structure of the space, e.g. the topology. The group of ...

Unitary Operators

A unitary operator preserves the ``lengths'' and ``angles'' between vectors, and it can be considered as a type of rotation operator in abstract vector space.

What is the unitary operator in quantum mechanics?

2019年9月29日 — A unitary operator (like a unitary matrix) is an operator that can change either the coordinates or the state itself. The requirement is that it ...

么正算符

在泛函分析中,么正算符(英語:unitary operator,或稱酉算符)是定義在希爾伯特空間上的有界線性算符U : H → H,滿足如下規律:.

說明

A unitary operator is a bounded linear operator U : H → H on a Hilbert space H that satisfies U*U = UU* = I, where U* is the adjoint of U, and I : H → H is the identity operator. The weaker condition U*U = I defines an isometry. The other condition, UU* =


unitaryoperator

AnoperatorisUnitaryifitsinverseequaltoitsadjoints:U-1=U+orUU+=U+U=I.Inquantummechanics,unitaryoperatorisusedforchangeofbasis.,2018年4月24日—Forfinitedimensionalinnerproductspaces,every1-1operatorisalsoanisomorphism.However,unitaryoperatorsarespecialisomorphisms ...,AunitaryoperatorisaboundedlinearoperatorU:H→HonaHilbertspaceHthatsatisfiesU*U=UU*=I,whereU*istheadjointofU,andI:H→Histheidentityop...